Bullet Impact on Steel and Kevlar®/Steel Armor - Experimental Data and Hydrocode Modeling with Eulerian and Lagrangian Methods

Dale S. Preece Vanessa S. Berg Loyd R. Payne

Explosives Applications Department, 5122
Sandia National Laboratories

Outline

- **♦** Introduction
- **♦ AUTODYN Simulations**
 - Lead/Copper Bullet Impact on Mild Steel
 - **" " Kevlar®/Steel armor**
- **♦ Ballistics Lab Experiments**
 - Lead/Copper Bullet Impact on Mild Steel
 - **" Kevlar®/Steel armor**
- Comments on Results
- **♦** Conclusions

Introduction

- ◆ Projectile: Lead/Copper Partitioned (A-Frame) Hunting Bullet
- ◆ .338 Winchester Magnum
- **♦ Chronographed Muzzle Velocities**
 - 842.16 m/s (2763 ft/s) Mild Steel Impacts
 - 854.35 m/s (2803 ft/s) Armor Impacts
 - 16 tests: mean = 847.98 m/s (2782 ft/s) std dev = ± 7.44 m/s (24.4 ft/s) = ± 0.877 %
- **♦ Witness Plate: Mild Steel**
- ♦ Armor: Kevlar® and Kevlar®/Steel

Bullet Penetration of Mild Steel

Geometry and Material Definition

Material Properties for Impact Simulations

Lead

	A ROBERT E TREETEN
Equation of State	Shock
Reference Density (g/cm³)	11.35
Gruneisen Coefficient	2.77
Parameter C ₁ (m/s)	2.051E03
Parameter S ₁	1.46
Strength Model	Von Mises
Shear Modulus (KPa)	5.6E6
Yield Strength (KPa)	5.0E3

Copper

Equation of State	Shock
Reference Density (g/cm³)	8.93
Gruneisen Coefficient	1.99
Parameter C ₁ (m/s)	3.94E03
Parameter S ₁	1.489
Strength Model	Von Mises
Shear Modulus (KPa)	4.5E7
Yield Strength (KPa)	7.0E4

Steel

Equation of State	Shock
Strength Model	Johnson-Cook
Reference Density (g/cm³)	7.896
Gruneisen Coefficient	2.17
Parameter C ₁ (m/s)	4.569E03
Parameter S ₁	1.49
Reference Temperature (K)	300
Shear Modulus (kPa)	8.18E07
Yield Stress (kPa)	5.17106E05
Hardening Constant (kPa)	2.75E05
Hardening Exponent	0.36
Strain Rate Constant	0.022
Thermal Softening Exponent	1.0
Melting Temperature (K)	1.811E03

Lead/Copper Bullet Penetration of Mild Steel

Color Represents Pressure

AUTODYN-2D Version 4.3.01a

Century Dynamics Incorporated

LEAD
COPPER
1006 STEEL
VOID
Y

Scale
2.300E+01

MATERIAL

LOCATION

CYCLE 0 T = 0.000E+00

AX (mm.mg.ms)

BULL-B: 225 GR 0.338 CAL FACTORY HUNTING BULLET

Lead/Copper Bullet Penetration of Mild Steel

Color Represents Absolute Velocity

AUTODYN-2D Version 4.3.01a

Century Dynamics Incorporated

MATERIAL

LOCATION

BULL-B: 225 GR 0.338 CAL FACTORY HUNTING BULLET

Lead/Copper Bullet Penetration of Mild Steel

Color Represents Absolute Velocity

Lambert Equation for Projectile Penetration (Ballistic Limit)

$$V_{l} = \left(\frac{l}{d}\right)^{0.15} (4000) \sqrt{\left(\frac{d^{3}}{m}\right) \left(\frac{t}{d}\right) Sec^{0.75}\theta + e^{-\left(\frac{t}{d}Sec^{0.75}\theta\right)} - 1\right) \left[\frac{m}{s}\right]}$$

Where:

```
l = Projectile length = 3.25 cm

d = Projectile diameter = 0.8585 cm

m = Projectile mass = 14.578(g)

t = Target thickness = 1.427 cm

\theta = Impact Angle = 0.0 deg
```

$$V_l = 939.12 \frac{m}{s}$$

Compared to 848 m/s => almost penetrates

Ref: Introduction to Terminal Ballistics - Course Notes, Donald R. Carlucci, 2004

Ballistic Limit

Typical Experimental Results

$$V_l = V_{50}$$

Material Properties for Impact Simulations (Cont)

Kevlar®

A ROSE CO. CONT. MARK.
Puff
1.29
8.21E06
7.036E07
0.0
0.35
0.25
8.23E06
0.0
0.0
0.0
0.0
Von Mises
3.0E7
3.0E5
-2.6E5

Lead/Copper Bullet Penetration of Kevlar and Mild Steel Geometry and Material Definition

Eulerian Simulation

Lead/Copper Bullet Penetration of Kevlar® and Mild Steel

Color Represents Absolute Velocity

B-K-VM: 225 GR 0.338 CAL FACTORY HUNTING BULLET

Lead/Copper Bullet Penetration of Kevlar® and Mild Steel

Color Represents Absolute Velocity

Lead/Copper Bullet Penetration of Kevlar® and Mild Steel Color Represents Failure Mode

Lead/Copper Bullet Penetration of Kevlar® and Mild Steel

Color Represents Absolute Velocity

Lagrangian Bullet Transversely Isotropic Model

AUTODYN-2D v5.0 from Century Dynamics

Kevlar Model

225 Grain 0.338 Cal Hunting Bullet Kevlar Board

Sandia National Laboratories
Explosives Applications Department, Org 15322

Reasonable Bullet Erosion

Lead/Copper Bullet Penetration of Kevlar® and Mild Steel Color Represents Absolute Velocity Lagrangian Bullet and Transversely Isotropic Kevlar Model

Front of Plate

Back of Plate

Comparison of Computer Predicted and Experimental Impact Crater – Steel Only

Comparison of Computer Predicted and Experimental Impact Crater – Keylar® /Steel

(Eulerian/Von Mises)

Front Side

Fragment Splatter

- Ricochet Back From Steel

Back Side

Process Zone – Substantial Size

Lead/Copper Bullet Penetration of Kevlar® and Mild Steel Eulerian Bullet - Lagrangian Transversely Isotropic Kevlar Increased Kevlar Erosion – Leaves Too Much Bullet

Lead/Copper Bullet Penetration of Kevlar® and Mild Steel Eulerian Bullet - Lagrangian Transversely Isotropic Keylar Reasonable Kevlar Erosion – Exiting Bullet About Right

Lead/Copper Bullet Penetration of Kevlar® and Mild Steel Eulerian Bullet - Lagrangian Transversely Isotropic Keylar Course Mesh, High Kevlar Erosion – Exiting Bullet About Right

Conclusions

- ♦ Hydrocode and ballistics lab results match well for lead/copper A-Frame bullets impacting on mild steel.
- ◆ A reasonable match between hydrocode predictions and ballistics lab results is obtained for Kevlar® armor using a Von Mises strength model. This "engineering" model was used to complete the armor design.
- ◆ A Von Mises strength model misses some of the essential physics of bullet penetration into a transversely isotropic material like Kevlar®.
- ◆ Use of a Lagrangian transversely isotropic material model yields more consistent results for the Kevlar. However, modeling the lead/copper bullet is more appropriate in the Eulerian Frame of Reference.
- ♦ Simulations using an Eulerian Bullet and Lagrangian Kevlar have been attempted with reasonable success.
 - The results are dependent on the Keylar erosion rate selected

Run = Novelty Work

Acknowledgments

- ◆ Dave Paul Ballistics experiments at the 6750 gun site.
- Leslie Kramer Experimental digital
 Photograph acquisition & processing.
- ◆ Russ Payne Experimental data compilation and reduction. Euler/Lagrange
- ◆ Erin Shrouf Data recording.